Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 692
Filtrar
1.
Sci Adv ; 10(14): eadk7535, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578996

RESUMO

Cyanobacteria use large antenna complexes called phycobilisomes (PBSs) for light harvesting. However, intense light triggers non-photochemical quenching, where the orange carotenoid protein (OCP) binds to PBS, dissipating excess energy as heat. The mechanism of efficiently transferring energy from phycocyanobilins in PBS to canthaxanthin in OCP remains insufficiently understood. Using cryo-electron microscopy, we unveiled the OCP-PBS complex structure at 1.6- to 2.1-angstrom resolution, showcasing its inherent flexibility. Using multiscale quantum chemistry, we disclosed the quenching mechanism. Identifying key protein residues, we clarified how canthaxanthin's transition dipole moment in its lowest-energy dark state becomes large enough for efficient energy transfer from phycocyanobilins. Our energy transfer model offers a detailed understanding of the atomic determinants of light harvesting regulation and antenna architecture in cyanobacteria.


Assuntos
Cianobactérias , Ficobilissomas , Ficobilissomas/química , Ficobilissomas/metabolismo , Proteínas de Bactérias/metabolismo , Cantaxantina/metabolismo , Microscopia Crioeletrônica , Cianobactérias/metabolismo
2.
Int J Biol Macromol ; 265(Pt 2): 131028, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521321

RESUMO

Photodamage to the photosynthetic apparatus by excessive light radiation has led to the evolution of a variety of energy dissipation mechanisms. A mechanism that exists in some cyanobacterial species, enables non-photochemical quenching of excitation energy within the phycobilisome (PBS) antenna complex by the Orange Carotenoid Protein (OCP). The OCP contains an active N-terminal domain (NTD) and a regulatory C-terminal domain (CTD). Some cyanobacteria also have genes encoding for homologs to both the CTD (CTDH) and the NTD (referred to as helical carotenoid proteins, HCP). The CTDH facilitates uptake of carotenoids from the thylakoid membranes to be transferred to the HCPs. Holo-HCPs exhibit diverse functionalities such as carotenoid carriers, singlet oxygen quenchers, and in the case of HCP4, constitutive OCP-like energy quenching. Here, we present the first crystal structure of the holo-HCP4 binding canthaxanthin molecule and an improved structure of the apo-CTDH from Anabaena sp. PCC 7120. We propose here models of the binding of the HCP4 to the PBS and the associated energy quenching mechanism. Our results show that the presence of the carotenoid is essential for fluorescence quenching. We also examined interactions within OCP-like species, including HCP4 and CTDH, providing the basis for mechanisms of carotenoid transfer from CTDH to HCPs.


Assuntos
Anabaena , Cianobactérias , Proteínas de Bactérias/química , Carotenoides/química , Cianobactérias/metabolismo , Cantaxantina , Anabaena/metabolismo , Ficobilissomas/química
3.
Photosynth Res ; 160(1): 17-29, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38407779

RESUMO

Phycobilisomes (PBs) play an important role in cyanobacterial photosynthesis. They capture light and transfer excitation energy to the photosynthetic reaction centres. PBs are also central to some photoprotective and photoregulatory mechanisms that help sustain photosynthesis under non-optimal conditions. Amongst the mechanisms involved in excitation energy dissipation that are activated in response to excessive illumination is a recently discovered light-induced mechanism that is intrinsic to PBs and has been the least studied. Here, we used single-molecule spectroscopy and developed robust data analysis methods to explore the role of a terminal emitter subunit, ApcE, in this intrinsic, light-induced mechanism. We isolated the PBs from WT Synechocystis PCC 6803 as well as from the ApcE-C190S mutant of this strain and compared the dynamics of their fluorescence emission. PBs isolated from the mutant (i.e., ApcE-C190S-PBs), despite not binding some of the red-shifted pigments in the complex, showed similar global emission dynamics to WT-PBs. However, a detailed analysis of dynamics in the core revealed that the ApcE-C190S-PBs are less likely than WT-PBs to enter quenched states under illumination but still fully capable of doing so. This result points to an important but not exclusive role of the ApcE pigments in the light-induced intrinsic excitation energy dissipation mechanism in PBs.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Synechocystis , Ficobilissomas/metabolismo , Synechocystis/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Proteínas de Bactérias/metabolismo , Espectrometria de Fluorescência
4.
Plant Physiol ; 194(3): 1383-1396, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37972281

RESUMO

Photosynthetic organisms harvest light using pigment-protein complexes. In cyanobacteria, these are water-soluble antennae known as phycobilisomes (PBSs). The light absorbed by PBS is transferred to the photosystems in the thylakoid membrane to drive photosynthesis. The energy transfer between these complexes implies that protein-protein interactions allow the association of PBS with the photosystems. However, the specific proteins involved in the interaction of PBS with the photosystems are not fully characterized. Here, we show in Synechocystis sp. PCC 6803 that the recently discovered PBS linker protein ApcG (sll1873) interacts specifically with PSII through its N-terminal region. Growth of cyanobacteria is impaired in apcG deletion strains under light-limiting conditions. Furthermore, complementation of these strains using a phospho-mimicking version of ApcG causes reduced growth under normal growth conditions. Interestingly, the interaction of ApcG with PSII is affected when a phospho-mimicking version of ApcG is used, targeting the positively charged residues interacting with the thylakoid membrane, suggesting a regulatory role mediated by phosphorylation of ApcG. Low-temperature fluorescence measurements showed decreased PSI fluorescence in apcG deletion and complementation strains. The PSI fluorescence was the lowest in the phospho-mimicking complementation strain, while the pull-down experiment showed no interaction of ApcG with PSI under any tested condition. Our results highlight the importance of ApcG for selectively directing energy harvested by the PBS and imply that the phosphorylation status of ApcG plays a role in regulating energy transfer from PSII to PSI.


Assuntos
Synechocystis , Synechocystis/metabolismo , Ficobilissomas/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Transferência de Energia/fisiologia
5.
Prog Biophys Mol Biol ; 186: 39-52, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030044

RESUMO

Algae, which are ubiquitous in ecosystems, have evolved a variety of light-harvesting complexes to better adapt to diverse habitats. Phycobilisomes/phycobiliproteins, unique to cyanobacteria, red algae, and certain cryptomonads, compensate for the lack of chlorophyll absorption, allowing algae to capture and efficiently transfer light energy in aquatic environments. With the advancement of microscopy and spectroscopy, the structure and energy transfer processes of increasingly complex phycobilisomes have been elucidated, providing us with a vivid portrait of the dynamic adaptation of their structures to the light environment in which algae thrive: 1) Cyanobacteria living on the surface of the water use short, small phycobilisomes to absorb red-orange light and reduce the damage from blue-violet light via multiple methods; 2) Large red algae inhabiting the depths of the ocean have evolved long and dense phycobilisomes containing phycoerythrin to capture the feeble blue-green light; 3) In far-red light environments such as caves, algae use special allophycocyanin cores to optimally utilize the far-red light; 4) When the environment shifts, algae can adjust the length, composition and density of their rods to better adapt; 5) By carefully designing the position of the pigments, phycobilisomes can transfer light energy to the reaction center with nearly 100% efficiency via three energy transfer processes.


Assuntos
Cianobactérias , Ficobilissomas , Ficobilissomas/química , Ecossistema
6.
Int J Biol Macromol ; 254(Pt 2): 127874, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939760

RESUMO

The Orange Carotenoid Protein (OCP) is a unique photoreceptor crucial for cyanobacterial photoprotection. Best studied Synechocystis sp. PCC 6803 OCP belongs to the large OCP1 family. Downregulated by the Fluorescence Recovery Protein (FRP) in low-light, high-light-activated OCP1 binds to the phycobilisomes and performs non-photochemical quenching. Recently discovered families OCP2 and OCP3 remain structurally and functionally underexplored, and no systematic comparative studies have ever been conducted. Here we present two first crystal structures of OCP2 from morphoecophysiologically different cyanobacteria and provide their comprehensive structural, spectroscopic and functional comparison with OCP1, the recently described OCP3 and all-OCP ancestor. Structures enable correlation of spectroscopic signatures with the effective number of hydrogen and discovered here chalcogen bonds anchoring the ketocarotenoid in OCP, as well as with the rotation of the echinenone's ß-ionone ring in the CTD. Structural data also helped rationalize the observed differences in OCP/FRP and OCP/phycobilisome functional interactions. These data are expected to foster OCP research and applications in optogenetics, targeted carotenoid delivery and cyanobacterial biomass engineering.


Assuntos
Proteínas de Bactérias , Synechocystis , Proteínas de Bactérias/química , Synechocystis/metabolismo , Análise Espectral , Carotenoides/química , Ficobilissomas/química
7.
Biochim Biophys Acta Bioenerg ; 1865(1): 149014, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739300

RESUMO

Phycobilisomes (PBSs) are giant water-soluble light-harvesting complexes of cyanobacteria and red algae, consisting of hundreds of phycobiliproteins precisely organized to deliver the energy of absorbed light to chlorophyll chromophores of the photosynthetic electron-transport chain. Quenching the excess of excitation energy is necessary for the photoprotection of photosynthetic apparatus. In cyanobacteria, quenching of PBS excitation is provided by the Orange Carotenoid Protein (OCP), which is activated under high light conditions. In this work, we describe parameters of anti-Stokes fluorescence of cyanobacterial PBSs in quenched and unquenched states. We compare the fluorescence readout from entire phycobilisomes and their fragments. The obtained results revealed the heterogeneity of conformations of chromophores in isolated phycobiliproteins, while such heterogeneity was not observed in the entire PBS. Under excitation by low-energy quanta, we did not detect a significant uphill energy transfer from the core to the peripheral rods of PBS, while the one from the terminal emitters to the bulk allophycocyanin chromophores is highly probable. We show that this direction of energy migration does not eliminate fluorescence quenching in the complex with OCP. Thus, long-wave excitation provides new insights into the pathways of energy conversion in the phycobilisome.


Assuntos
Cianobactérias , Ficobilissomas , Ficobilissomas/metabolismo , Proteínas de Bactérias/metabolismo , Fotossíntese , Cianobactérias/metabolismo , Espectrometria de Fluorescência/métodos
8.
Nat Commun ; 14(1): 8009, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049400

RESUMO

Phycobilisomes (PBS) are antenna megacomplexes that transfer energy to photosystems II and I in thylakoids. PBS likely evolved from a basic, inefficient form into the predominant hemidiscoidal shape with radiating peripheral rods. However, it has been challenging to test this hypothesis because ancestral species are generally inaccessible. Here we use spectroscopy and cryo-electron microscopy to reveal a structure of a "paddle-shaped" PBS from a thylakoid-free cyanobacterium that likely retains ancestral traits. This PBS lacks rods and specialized ApcD and ApcF subunits, indicating relict characteristics. Other features include linkers connecting two chains of five phycocyanin hexamers (CpcN) and two core subdomains (ApcH), resulting in a paddle-shaped configuration. Energy transfer calculations demonstrate that chains are less efficient than rods. These features may nevertheless have increased light absorption by elongating PBS before multilayered thylakoids with hemidiscoidal PBS evolved. Our results provide insights into the evolution and diversification of light-harvesting strategies before the origin of thylakoids.


Assuntos
Cianobactérias , Tilacoides , Tilacoides/metabolismo , Ficobilissomas/metabolismo , Microscopia Crioeletrônica , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo
9.
Commun Biol ; 6(1): 1210, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012412

RESUMO

Photosynthetic organisms adapt to changing light conditions by manipulating their light harvesting complexes. Biophysical, biochemical, physiological and genetic aspects of these processes are studied extensively. The structural basis for these studies is lacking. In this study we address this gap in knowledge by focusing on phycobilisomes (PBS), which are large structures found in cyanobacteria and red algae. In this study we focus on the phycobilisomes (PBS), which are large structures found in cyanobacteria and red algae. Specifically, we examine red algae (Porphyridium purpureum) grown under a low light intensity (LL) and a medium light intensity (ML). Using cryo-electron microscopy, we resolve the structure of ML-PBS and compare it to the LL-PBS structure. The ML-PBS is 13.6 MDa, while the LL-PBS is larger (14.7 MDa). The LL-PBS structure have a higher number of closely coupled chromophore pairs, potentially the source of the red shifted fluorescence emission from LL-PBS. Interestingly, these differences do not significantly affect fluorescence kinetics parameters. This indicates that PBS systems can maintain similar fluorescence quantum yields despite an increase in LL-PBS chromophore numbers. These findings provide a structural basis to the processes by which photosynthetic organisms adapt to changing light conditions.


Assuntos
Porphyridium , Rodófitas , Ficobilissomas/química , Microscopia Crioeletrônica , Aclimatação
10.
Nat Commun ; 14(1): 3961, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407580

RESUMO

Phycobilisomes (PBS) are the major light harvesting complexes of photosynthesis in the cyanobacteria and red algae. CpcL-PBS is a type of small PBS in cyanobacteria that transfers energy directly to photosystem I without the core structure. Here we report the cryo-EM structure of the CpcL-PBS from the cyanobacterium Synechocystis sp. PCC 6803 at 2.6-Å resolution. The structure shows the CpcD domain of ferredoxin: NADP+ oxidoreductase is located at the distal end of CpcL-PBS, responsible for its attachment to PBS. With the evidence of ultrafast transient absorption and fluorescence spectroscopy, the roles of individual bilins in energy transfer are revealed. The bilin 1Iß822 located near photosystem I has an enhanced planarity and is the red-bilin responsible for the direct energy transfer to photosystem I.


Assuntos
Ficobilissomas , Synechocystis , Ficobilissomas/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Microscopia Crioeletrônica , Synechocystis/metabolismo , Espectrometria de Fluorescência , Transferência de Energia , Proteínas de Bactérias/química
11.
Biochim Biophys Acta Bioenerg ; 1864(4): 148993, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37321385

RESUMO

Phycobilisomes (PBSs), which are huge pigment-protein complexes displaying distinctive color variations, bind to photosystem cores for excitation-energy transfer. It is known that isolation of supercomplexes consisting of PBSs and photosystem I (PSI) or PBSs and photosystem II is challenging due to weak interactions between PBSs and the photosystem cores. In this study, we succeeded in purifying PSI-monomer-PBS and PSI-dimer-PBS supercomplexes from the cyanobacterium Anabaena sp. PCC 7120 grown under iron-deficient conditions by anion-exchange chromatography, followed by trehalose density gradient centrifugation. The absorption spectra of the two types of supercomplexes showed apparent bands originating from PBSs, and their fluorescence-emission spectra exhibited characteristic peaks of PBSs. Two-dimensional blue-native (BN)/SDS-PAGE of the two samples showed a band of CpcL, which is a linker protein of PBS, in addition to PsaA/B. Since interactions of PBSs with PSI are easily dissociated during BN-PAGE using thylakoids from this cyanobacterium grown under iron-replete conditions, it is suggested that iron deficiency for Anabaena induces tight association of CpcL with PSI, resulting in the formation of PSI-monomer-PBS and PSI-dimer-PBS supercomplexes. Based on these findings, we discuss interactions of PBSs with PSI in Anabaena.


Assuntos
Anabaena , Cianobactérias , Complexo de Proteína do Fotossistema I/metabolismo , Tilacoides/metabolismo , Anabaena/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Cianobactérias/metabolismo , Ficobilissomas/metabolismo , Ferro/metabolismo
12.
Microbiol Spectr ; 11(4): e0050023, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37318337

RESUMO

Our planet is sustained by sunlight, the primary energy source made accessible to all life forms by photoautotrophs. Photoautotrophs are equipped with light-harvesting complexes (LHCs) that enable efficient capture of solar energy, particularly when light is limiting. However, under high light, LHCs can harvest photons in excess of the utilization capacity of cells, causing photodamage. This damaging effect is most evident when there is a disparity between the amount of light harvested and carbon available. Cells strive to circumvent this problem by dynamically adjusting the antenna structure in response to the changing light signals, a process known to be energetically expensive. Much emphasis has been laid on elucidating the relationship between antenna size and photosynthetic efficiency and identifying strategies to synthetically modify antennae for optimal light capture. Our study is an effort in this direction and investigates the possibility of modifying phycobilisomes, the LHCs present in cyanobacteria, the simplest of photoautotrophs. We systematically truncate the phycobilisomes of Synechococcus elongatus UTEX 2973, a widely studied, fast-growing model cyanobacterium and demonstrate that partial truncation of its antenna can lead to a growth advantage of up to 36% compared to the wild type and an increase in sucrose titer of up to 22%. In contrast, targeted deletion of the linker protein which connects the first phycocyanin rod to the core proved detrimental, indicating that the core alone is not enough, and it is essential to maintain a minimal rod-core structure for efficient light harvest and strain fitness. IMPORTANCE Light energy is essential for the existence of life on this planet, and only photosynthetic organisms, equipped with light-harvesting antenna protein complexes, can capture this energy, making it readily accessible to all other life forms. However, these light-harvesting antennae are not designed to function optimally under extreme high light, a condition which can cause photodamage and significantly reduce photosynthetic productivity. In this study, we attempt to assess the optimal antenna structure for a fast-growing, high-light tolerant photosynthetic microbe with the goal of improving its productivity. Our findings provide concrete evidence that although the antenna complex is essential, antenna modification is a viable strategy to maximize strain performance under controlled growth conditions. This understanding can also be translated into identifying avenues to improve light harvesting efficiency in higher photoautotrophs.


Assuntos
Ficobilissomas , Synechococcus , Ficobilissomas/metabolismo , Synechococcus/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese
13.
Cells ; 12(11)2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37296601

RESUMO

The aim of this study was to examine how light intensity and quality affect the photosynthetic apparatus of Cyanidioschyzon merolae cells by modulating the structure and function of phycobilisomes. Cells were grown in equal amounts of white, blue, red, and yellow light of low (LL) and high (HL) intensity. Biochemical characterization, fluorescence emission, and oxygen exchange were used to investigate selected cellular physiological parameters. It was found that the allophycocyanin content was sensitive only to light intensity, whereas the phycocynin content was also sensitive to light quality. Furthermore, the concentration of the PSI core protein was not affected by the intensity or quality of the growth light, but the concentration of the PSII core D1 protein was. Finally, the amount of ATP and ADP was lower in HL than LL. In our opinion, both light intensity and quality are main factors that play an important regulatory role in acclimatization/adaptation of C. merolae to environmental changes, and this is achieved by balancing the amounts of thylakoid membrane and phycobilisome proteins, the energy level, and the photosynthetic and respiratory activity. This understanding contributes to the development of a mix of cultivation techniques and genetic changes for a future large-scale synthesis of desirable biomolecules.


Assuntos
Complexo de Proteína do Fotossistema I , Ficobilissomas , Ficobilissomas/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Fotossíntese/fisiologia , Tilacoides/metabolismo , Luz
14.
Int J Mol Sci ; 24(11)2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37298688

RESUMO

The phycobilisome (PBS) is the major light-harvesting apparatus in cyanobacteria and red algae. It is a large multi-subunit protein complex of several megadaltons that is found on the stromal side of thylakoid membranes in orderly arrays. Chromophore lyases catalyse the thioether bond between apoproteins and phycobilins of PBSs. Depending on the species, composition, spatial assembly, and, especially, the functional tuning of different phycobiliproteins mediated by linker proteins, PBSs can absorb light between 450 and 650 nm, making them efficient and versatile light-harvesting systems. However, basic research and technological innovations are needed, not only to understand their role in photosynthesis but also to realise the potential applications of PBSs. Crucial components including phycobiliproteins, phycobilins, and lyases together make the PBS an efficient light-harvesting system, and these provide a scheme to explore the heterologous synthesis of PBS. Focusing on these topics, this review describes the essential components needed for PBS assembly, the functional basis of PBS photosynthesis, and the applications of phycobiliproteins. Moreover, key technical challenges for heterologous biosynthesis of phycobiliproteins in chassis cells are discussed.


Assuntos
Ficobilissomas , Rodófitas , Ficobilissomas/química , Ficobilissomas/metabolismo , Ficobilinas , Ficobiliproteínas/química , Ficobiliproteínas/metabolismo , Fotossíntese , Rodófitas/química
15.
J Am Chem Soc ; 145(21): 11659-11668, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37200045

RESUMO

The phycobilisome is the primary light-harvesting antenna in cyanobacterial and red algal oxygenic photosynthesis. It maintains near-unity efficiency of energy transfer to reaction centers despite relying on slow exciton hopping along a relatively sparse network of highly fluorescent phycobilin chromophores. How the complex maintains this high efficiency remains unexplained. Using a two-dimensional electronic spectroscopy polarization scheme that enhances energy transfer features, we directly watch energy flow in the phycobilisome complex of Synechocystis sp. PCC 6803 from the outer phycocyanin rods to the allophycocyanin core. The observed downhill flow of energy, previously hidden within congested spectra, is faster than timescales predicted by Förster hopping along single rod chromophores. We attribute the fast, 8 ps energy transfer to interactions between rod-core linker proteins and terminal rod chromophores, which facilitate unidirectionally downhill energy flow to the core. This mechanism drives the high energy transfer efficiency in the phycobilisome and suggests that linker protein-chromophore interactions have likely evolved to shape its energetic landscape.


Assuntos
Ficobilissomas , Synechocystis , Ficobilissomas/química , Ficobilissomas/metabolismo , Fotossíntese , Transferência de Energia , Synechocystis/química
16.
Metab Eng ; 77: 174-187, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37030607

RESUMO

Efforts to stably over-express recombinant proteins in cyanobacteria are hindered due to cellular proteasome activity that efficiently degrades foreign proteins. Recent work from this lab showed that a variety of exogenous genes from plants, humans, and bacteria can be successfully and stably over-expressed in cyanobacteria, as fusion constructs with the abundant ß-subunit of phycocyanin (the cpcB gene product) in quantities up to 10-15% of the total cell protein. The CpcB*P fusion proteins did not simply accumulate in a soluble free-floating form in the cell but, rather, they assembled as functional (α,ß*P)3CpcG1 heterohexameric light-harvesting phycocyanin antenna discs, where α is the CpcA α-subunit of phycocyanin, ß*P is the CpcB*P fusion protein, the asterisk denoting fusion, and CpcG1 is the 28.9 kDa phycocyanin disc linker polypeptide (Hidalgo Martinez et al., 2022). The present work showed that the CpcA α-subunit of phycocyanin and the CpcG1 28.9 kDa phycocyanin disc linker polypeptide can also successfully serve as leading sequences in functional heterohexameric (α*P,ß)3CpcG1 and (α,ß)3CpcG1*P fusion constructs that permit stable recombinant protein over-expression and accumulation. These were shown to form a residual light-harvesting antenna and to contribute to photosystem-II photochemistry in the cyanobacterial cells. The work suggested that cyanobacterial cells need phycocyanin for light absorption, photosynthesis, and survival and, therefore, may tolerate the presence of heterologous recombinant proteins, when the latter are in a fusion construct configuration with essential cellular proteins, e.g., phycocyanin, thus allowing their substantial and stable accumulation.


Assuntos
Cianobactérias , Ficobilissomas , Humanos , Ficobilissomas/genética , Ficobilissomas/metabolismo , Ficocianina/genética , Ficocianina/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Peptídeos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Plantas/genética
17.
Plant Physiol ; 192(4): 2640-2655, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37070859

RESUMO

Orange carotenoid protein (OCP) is a photoactive protein that participates in the photoprotection of cyanobacteria. There are 2 full-length OCP proteins, 4 N-terminal paralogs (helical carotenoid protein [HCP]), and 1 C-terminal domain-like carotenoid protein (CCP) found in Nostoc flagelliforme, a desert cyanobacterium. All HCPs (HCP1 to 3 and HCP6) from N. flagelliforme demonstrated their excellent singlet oxygen quenching activities, in which HCP2 was the strongest singlet oxygen quencher compared with others. Two OCPs, OCPx1 and OCPx2, were not involved in singlet oxygen scavenging; instead, they functioned as phycobilisome fluorescence quenchers. The fast-acting OCPx1 showed more effective photoactivation and stronger phycobilisome fluorescence quenching compared with OCPx2, which behaved differently from all reported OCP paralogs. The resolved crystal structure and mutant analysis revealed that Trp111 and Met125 play essential roles in OCPx2, which is dominant and long acting. The resolved crystal structure of OCPx2 is maintained in a monomer state and showed more flexible regulation in energy quenching activities compared with the packed oligomer of OCPx1. The recombinant apo-CCP obtained the carotenoid pigment from holo-HCPs and holo-OCPx1 of N. flagelliforme. No such carotenoid transferring processes were observed between apo-CCP and holo-OCPx2. The close phylogenetic relationship of OCP paralogs from subaerial Nostoc species indicates an adaptive evolution toward development of photoprotection: protecting cellular metabolism against singlet oxygen damage using HCPs and against excess energy captured by active phycobilisomes using 2 different working modes of OCPx.


Assuntos
Nostoc , Ficobilissomas , Filogenia , Ficobilissomas/metabolismo , Oxigênio Singlete , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Nostoc/genética , Nostoc/metabolismo
18.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982707

RESUMO

Thermophilic cyanobacteria are cosmopolitan and abundant in the thermal environment. Their light-harvesting complexes, phycobilisomes (PBS), are highly important in photosynthesis. To date, there is limited information on the PBS composition of thermophilic cyanobacteria whose habitats are challenging for survival. Herein, genome-based methods were used to investigate the molecular components of PBS in 19 well-described thermophilic cyanobacteria. These cyanobacteria are from the genera Leptolyngbya, Leptothermofonsia, Ocullathermofonsia, Thermoleptolyngbya, Trichothermofonsia, Synechococcus, Thermostichus, and Thermosynechococcus. According to the phycobiliprotein (PBP) composition of the rods, two pigment types are observed in these thermophiles. The amino acid sequence analysis of different PBP subunits suggests several highly conserved cysteine residues in these thermophiles. Certain amino acid contents in the PBP of thermophiles are significantly higher than their mesophilic counterparts, highlighting the potential roles of specific substitutions of amino acid in the adaptive thermostability of light-harvesting complexes in thermophilic cyanobacteria. Genes encoding PBS linker polypeptides vary among the thermophiles. Intriguingly, motifs in linker apcE indicate a photoacclimation of a far-red light by Leptolyngbya JSC-1, Leptothermofonsia E412, and Ocullathermofonsia A174. The composition pattern of phycobilin lyases is consistent among the thermophiles, except for Thermostichus strains that have extra homologs of cpcE, cpcF, and cpcT. In addition, phylogenetic analyses of genes coding for PBPs, linkers, and lyases suggest extensive genetic diversity among these thermophiles, which is further discussed with the domain analyses. Moreover, comparative genomic analysis suggests different genomic distributions of PBS-related genes among the thermophiles, indicating probably various regulations of expression. In summary, the comparative analysis elucidates distinct molecular components and organization of PBS in thermophilic cyanobacteria. These results provide insights into the PBS components of thermophilic cyanobacteria and fundamental knowledge for future research regarding structures, functions, and photosynthetic improvement.


Assuntos
Cianobactérias , Ficobilissomas , Ficobilissomas/genética , Ficobilissomas/metabolismo , Filogenia , Cianobactérias/genética , Cianobactérias/metabolismo , Ficobilinas , Complexos de Proteínas Captadores de Luz/genética , Proteínas de Bactérias/metabolismo
19.
Biochemistry ; 62(7): 1307-1320, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36943676

RESUMO

Phycobilisomes (PBSs) are the major photosynthetic light-harvesting complexes in cyanobacteria and red algae. PBS, a multisubunit protein complex, has two major interfaces that comprise intrinsically disordered regions (IDRs): rod-core and core-membrane. IDRs do not form regular, three-dimensional structures on their own. Their presence in the photosynthetic pigment-protein complexes portends their structural and functional importance. A recent model suggests that PB-loop, an IDR located on the PBS subunit ApcE and C-terminal extension (CTE) of the PBS subunit ApcG, forms a structural protrusion on the PBS core-membrane side, facing the thylakoid membrane. Here, the structural synergy between the rod-core region and the core-membrane region was investigated using quantitative mass spectrometry (MS). The AlphaFold-predicted CpcG-CTE structure was first modeled onto the PBS rod-core region, guided and justified by the isotopically encoded structural MS data. Quantitative cross-linking MS analysis revealed that the structural proximity of the PB-loop in ApcE and ApcG-CTE is significantly disturbed in the absence of six PBS rods, which are attached to PBS via CpcG-CTE, indicative of drastic conformational changes and decreased structural integrity. These results suggest that CpcG-rod attachment on the PBS rod-core side is essentially required for the PBS core-membrane structural assembly. The hypothesized long-range synergy between the rod-core interface (where the orange carotenoid protein also functions) and the terminal energy emitter of PBS must have important regulatory roles in PBS core assembly, light-harvesting, and excitation energy transmission. These data also lend strategies that genetic truncation of the light-harvesting antennas aimed for improved photosynthetic productivity must rely on an in-depth understanding of their global structural integrity.


Assuntos
Cianobactérias , Ficobilissomas , Ficobilissomas/metabolismo , Cianobactérias/metabolismo , Tilacoides/metabolismo , Espectrometria de Massas
20.
Nature ; 616(7955): 199-206, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36922595

RESUMO

In oxygenic photosynthetic organisms, light energy is captured by antenna systems and transferred to photosystem II (PSII) and photosystem I (PSI) to drive photosynthesis1,2. The antenna systems of red algae consist of soluble phycobilisomes (PBSs) and transmembrane light-harvesting complexes (LHCs)3. Excitation energy transfer pathways from PBS to photosystems remain unclear owing to the lack of structural information. Here we present in situ structures of PBS-PSII-PSI-LHC megacomplexes from the red alga Porphyridium purpureum at near-atomic resolution using cryogenic electron tomography and in situ single-particle analysis4, providing interaction details between PBS, PSII and PSI. The structures reveal several unidentified and incomplete proteins and their roles in the assembly of the megacomplex, as well as a huge and sophisticated pigment network. This work provides a solid structural basis for unravelling the mechanisms of PBS-PSII-PSI-LHC megacomplex assembly, efficient energy transfer from PBS to the two photosystems, and regulation of energy distribution between PSII and PSI.


Assuntos
Complexos de Proteínas Captadores de Luz , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema II , Ficobilissomas , Porphyridium , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/ultraestrutura , Fotossíntese , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/ultraestrutura , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/ultraestrutura , Ficobilissomas/química , Ficobilissomas/metabolismo , Ficobilissomas/ultraestrutura , Porphyridium/química , Porphyridium/enzimologia , Porphyridium/metabolismo , Porphyridium/ultraestrutura , Microscopia Crioeletrônica , Imagem Individual de Molécula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...